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Background: Land surface temperature (LST) and percent surface imperviousness (SI), both 
derived from satellite imagery, have been used to characterize the urban heat island effect, a phe-
nomenon in which urban areas are warmer than non-urban areas.

Objectives: We aimed to assess the correlations between LSTs and SI images with actual tempera-
ture readings from a ground-based network of outdoor monitors.

Methods: We evaluated the relationships among a) LST calculated from a 2009 summertime 
satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land 
Cover Data Set; and c) ground-based temperature measurements monitored during the same time 
period at 19 residences throughout the Detroit metropolitan region. Associations between these 
ground-based temperatures and the average LSTs and SI at different radii around the point of the 
ground-based temperature measurement were evaluated at different time intervals. Spearman cor-
relation coefficients and corresponding p-values were calculated.

Results: Satellite-derived LST and SI values were significantly correlated with 24-hr average and 
August monthly average ground temperatures at all but two of the radii examined (100 m for LST 
and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 
0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 
0.49 to 0.91 were observed between LST and SI.

Conclusions: Both SI and LST could be used to better understand spatial variation in heat expo-
sures over longer time frames but are less useful for estimating shorter-term, actual temperature 
exposures, which can be useful for public health preparedness during extreme heat events.
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Introduction
Use of thermal remote sensing and advanced 
spatial modeling are emerging trends in 
environmental epidemiology and public 
health. Geospatial technologies provide a 
valuable resource to assist public health practi­
tioners and emergency response planners 
in identifying areas that are most at risk 
and using these scientific outputs to inform 
policies and practices. Thermal remote sensing 
products such as thermal images captured 
by the Landsat-5 Thermal Mapper (L5-TM) 
(NASA 2013) instrument have been used to 
study areas of higher relative temperatures 
within a city, also known as micro-urban heat 
islands (Johnson 2009).

L5-TM has an advantage over other sen­
sors, such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (NASA 2011), 
in that L5-TM provides a spatial resolution of 
120 m (compared with 1,000 m for the ther­
mal band of MODIS); however, it provides 
only 16-day repeatability, at best, compared 
with 1-day repeatability for MODIS (Aniello 
et  al. 1995). The Advanced Spaceborne 
Thermal Emission and Reflection Radiometer 
(ASTER) is another sensor that could be used, 
but imagery is not available free of charge 

(NASA Jet Propulsion Laboratory 2012). The 
data captured by satellite can be transformed 
into several helpful measures, including land 
surface temperatures (LST) and percent surface 
imperviousness (SI). LSTs are a primary factor 
in determining surface radiation and human 
comfort in cities (Weng 2009).

The higher spatial resolution of L5-TM 
information is important in micro-urban heat 
island studies, so we have focused on those 
data here. The SI is defined as the percent of 
the surface of an area that is not penetrable by 
water, such as concrete or asphalt, and can be 
mapped at a 30‑m resolution with L5-TM. 
This characteristic has been commonly used in 
studies to assess the degree of urbanization of 
an environment as well as explore the spatial 
extent of surface urban heat islands (Roy and 
Yuan 2009).

The relationship between LST and vege­
tated areas has been documented in the 
literature. A study by Aniello et al. (1995) 
compared the spatial distribution of micro-
urban heat islands and tree cover in Dallas, 
Texas, using L5-TM and geographic infor­
mation systems (GIS). They examined the 
usefulness of L5-TM for classifying tree-
cover information and using thermal band 6 

to produce a thermal map of Dallas, Texas. 
Their methods involved processing and clas­
sifying L5-TM images and tree cover data in 
GIS. Although L5-TM data were useful for 
mapping micro-urban heat islands in Dallas, 
the authors recommended use of exact on-
the-ground temperatures for image calibra­
tion in future studies. Remote sensing data 
have been used to help model urban surface 
temperatures; specifically, validating LST 
data with actual on-the-ground temperature 
measurements, known as ground-truthing. 
For example, strong correlations between 
satellite-derived air temperatures and in situ 
measurements were found when charac­
terizing urban heat island intensity in Hong 
Kong, using ASTER satellite imagery (Fung 
et al. 2009). Comparisons between ground 
temperatures and estimated temperatures 
using imagery from MODIS, the National 
Oceanic and Atmospheric Administration 
Advanced Very High Resolution Radiometer 
(NOAA-AVHRR), and L5‑TM, showed a 
very high correlation in both urban and rural 
areas (Rigo et al. 2006). Although previous 
studies have used Landsat to create predic­
tion models for surface temperature, and 
shown strong correlations between surface 
temperature and surface imperviousness (Yuan 
and Bauer 2007), few studies have simulta­
neously explored the relationship among SI, 
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ground-based temperature measures, and LST 
calculated from thermal imagery.

Adaptation to the consequences of climate 
change, as future scenarios of heat-related 
morbidity and mortality become a major 
public health concern, requires predicting 
areas of high vulnerability to heat in cities. 
Epidemiologic studies on heat and health 
have begun to use satellite-derived tempera­
tures (instead of temperature data from the 
nearest airport) and land cover to potentially 
provide more refined heat exposure classifica­
tions. A study in Philadelphia used GIS and 
thermal imaging to investigate the relationship 
between the spatial distributions of vulner­
able populations, urban heat island intensi­
ties, and heat-related deaths (Johnson and 
Wilson 2009). The authors recommended that 
more multi-year studies use spatial modeling 
and remote sensing methods to better help 
determine areas of risk throughout cities

Uejio et al. (2011) used ASTER data to 
determine the magnitude and spatial varia­
tion of mean radiant surface temperature for 
different densities of impervious surface area 
(ISA), to further document the change in air 
trends and air quality that can result from 
transforming land use from rural to urban. 
Harlan et al. (2013) used Landsat (30‑m reso­
lution) to calculate the Normalized Difference 
Vegetative Index (NDVI) and estimated sur­
face temperatures. 

There is still a need to understand how 
proxies for heat exposure correlate with actual 
heat exposure. Harlan et al. (2013) provided 
correlations between the mean NDVIs and 
surface temperatures at the census block group 
level. Our study goes beyond this compari­
son by correlating SI, land surface temperature 
(estimated from Landsat), and actual tempera­
ture measurements made by a ground-based 
temperature monitor network over the sum­
mer. Our study is novel for evaluating the cor­
relations between satellite-derived temperatures 
and a ground-based temperature network with 
high temporal (10 min) and spatial resolution 
(19 monitors over a range of levels of SI within 
a single county) at a height relevant to human 
health (1.5 m above the ground). Further, 
it characterizes these features in metropoli­
tan Detroit, Michigan, where people may be 
poorly adapted to heat and where several epi­
demiologic studies have already shown impor­
tant and socially unequal health consequences 
associated with hot weather (Anderson and 
Bell 2009; O’Neill et al. 2003; Schwartz et al. 
2004; Sheridan and Kalkstein 2010).

Indeed, integrating information from 
ground-based temperature monitoring net­
works and satellite-derived images using a GIS 
platform can provide useful data for exposure 
assessments in most urban areas, specifically 
for the study of heat-related death and illness. 
Validation of satellite data sources by ground 

truthing (i.e., information that is collected on 
location) can help characterize and identify 
neighborhood-level urban heat islands; this 
information could be useful for public health 
professionals and urban planners to prevent 
heat-related mortality and other adverse health 
effects from high summer temperatures. Such 
data could also direct intervention strategies 
to reduce the urban heat island effect. Some 
previously published work did not explicitly 
address the practical challenges of integrating 
insights from ground-truthing studies with 
public health research and applications (Lo 
and Faber 1997).

The purpose of this study is to apply a 
public health perspective to a determination 
of whether spatial variation of temperatures 
within a network of ground-based outdoor 
temperature monitors is correlated with 
satellite-derived LST and SI. Although we did 
not expect LST (which represents the tempera­
ture of the ground) to completely predict the 
temperature of the air at a height relevant to 
human health, we hypothesized that the air 
temperatures measured by a ground-based 
temperature monitoring network would be 
highly correlated with LST as well as with 
values of SI.

Methods
Ground-based temperature-monitoring net-
work and surface imperviousness. Sites in our 
ground-based temperature monitor network 
in the Detroit metropolitan region (Wayne 
County, MI) were selected, with site SI val­
ues ranging from 0 to 100% imperviousness 
and with buffer zones around each site ranging 
from 0 to 800 m. We picked both urban and 
rural locations to assess the temperature dif­
ferences among areas within the same county 
that might have different land-use patterns. 
This strategy was designed partly to evaluate 
the existence of urban heat island structure in 
the Detroit metropolitan region (Oswald et al. 
2012; Zhang et al. 2011). Using SI from the 
U.S. Geologic Survey (USGS) National Land 
Cover Database (NLCD) product (Multi-
Resolution Land Characteristics Consortium 
2013), we performed half-mile smoothing of 
every pixel and classified SI by decile. Once the 
SI surrounding various prospective residential 
sites for placing the temperature monitors was 
established and a range of SI levels was ensured 
by the sampling strategy, home occupants were 
approached, told the purpose of the study, 
and asked if they would be willing to have 
a temperature monitor outside their homes. 
All volunteers signed an agreement letter to 
participate. The research was compliant with 
all relevant national, state, and local human 
subjects regulations.

HOBO Pro v2 U23-002 (external 
temperature/relative humidity) outdoor tem­
perature monitoring devices (Onset HOBO 

Data Loggers, Pocasset, MA) were calibrated 
and used to record temperature and relative 
humidity at 10‑min intervals from 13 June to 
30 September 2009. The calibration process 
involved collocating the monitors in a con­
trolled environment along with a temperature 
probe from the National Institute of Standards 
and Technology (Gaithersburg, MD) to ensure 
that the temperatures recorded were within the 
accuracy range reported in the operation man­
ual: ± 0.21oC, within an ambient temperature 
range of 0–50oC (Onset HOBO Data Loggers 
2013). Monitors were positioned in residential 
grass-covered backyards of volunteers follow­
ing a strict placement protocol that required 
monitors to be sited a) at least 10 ft (3 m) away 
from buildings, homes, and trees; b) 1.5 m 
from the actual surface [to better assess the level 
of exposure that would be experienced by a 
person of average height and to be consistent 
with the instrument siting protocols used by 
the World Meteorological Organization, as well 
as NOAA’s National Weather Service (World 
Meteorological Organization 2008)]; c) not in 
the direct pathway of automatic lawn sprinkling 
systems; d) not in a shady area or near falling 
objects; e) away from power lines and swampy 
damp ground; and f ) facing southwest.

Processing the L5-TM satellite image to 
derive land surface temperature. Images of 
Earth were taken nearly continuously from 
1 March 1984 to January 2013 on a 16-day 
cycle by the L5-TM, which consistently 
imaged the Detroit Metropolitan Region at 
about 1205 hours Eastern Daylight Time 
(EDT) at each pass. L5-TM captured images 
collected at a 705‑km altitude, 185‑km swath, 
120‑m spatial resolution for thermal band 
data and 30‑m resolution for the other spec­
tral bands. The satellite images captured by 
L5-TM are free and downloadable from the 
USGS (USGS 2013).

Satellite images were downloaded for 
use only if they met the following criteria: 
The images were captured during the study 
period, covered the entire study area (geo­
graphically), had < 14% cloud cover, and 
were taken under clear weather conditions. 
More cloud cover and unclear weather 
conditions can inhibit the signal strength 
reflected back to the satellite and cause under­
estimation of the ground surface tempera­
ture. Each image had seven spectral bands 
of information. Thermal infrared band 6 
(10.4–12.5 μm) provides the data that can 
be converted from raw digital numbers to 
LST. To convert from a digital number to a 
temperature, we needed calibration formulas, 
atmospheric correction tools, and transforma­
tions (Figure 1). Once an image was selected 
by our criteria, we used ERDAS Imagine 9.2 
software (Leica Geosystems, Inc., Atlanta, 
GA) to convert the image (from a TIFF file 
to an IMG file) to a usable format for GIS. 
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ArcGIS version 9.3.1 (ESRI, Redlands, CA) 
was used to perform the calculations outlined 
below. First we converted the digital num­
bers taken from the raw image into at-sensor 
spectral radiance [Lλ, the temperature read at 
the sensor, W/m2 × sr × μm (watts per square 
meter per steradian per micrometer)]. The 
source equations and calibration constants 
developed specifically for L5-TM images were 
used from the process outlined by Chander 
et al. (2009). LTOA was then used to calculate 
an actual ground surface temperature.

Because the satellite signal received by the 
sensor is in space, the effects of the atmosphere 
(i.e., air pollution, weather) and surface emis­
sivity (the ratio of the radiation emitted by a 
surface to the radiation emitted by a black­
body at the same temperature: i.e., how well 
different surfaces reflect solar energy) can 
have considerable influence on the accuracy 
of the satellite-derived surface temperature. 
To account for these influences, we used a 
tool that estimates atmospheric influences in 
conjunction with a data layer of emissivity for 
the study area. Using this web-based atmo­
spheric correction parameter tool developed by 
Barsi et al. (2003), we estimated three scene- 
specific parameters for each satellite image. 
The tool required the following inputs for each 
satellite scene: year, month, day, Greenwich 
Mean Time (GMT), and latitude and lon­
gitude coordinates. The outputs of this tool 
were the three parameters: atmospheric trans­
mission (T, unitless), upwelling radiance (Lu, 
W/m2 × sr × µm) and downwelling radiance 
(Ld, W/m2 × sr × μm), where W/m2 × sr × μm 
are the units of spectral radiance. 

Values of emissivity for the study area 
were then estimated by examining the land 
use/land cover designations, downloaded for 
the region from the 2006 NLCD (Multi-
Resolution Land Characteristics Consortium 
2013). We considered the differences in 
emissivity of various impervious surface land 
cover types in the main equation to calcu­
late surface temperature. Because our land 
cover data do not distinguish among different 
types of impervious surface, we were unable 
to represent possible differences in emissivities 
among them. We created a layer of emissivity 
(ε; range, 0–1) for the study area based on 
reference emissivity values for various land 
cover classes used in other studies (Lillesand 
et al. 2007).These values of emissivity, cou­
pled with the atmospheric correction param­
eters, were used in the following equation to 
calculate the radiance of a blackbody target 
of kinetic temperature (LT), which ultimately 
represented surface temperature:

LT = (Lλ – Lu – (1 – ε) × Ld)/(Τ × ε),	 [1]

where LT = radiance of a blackbody target 
of kinetic temperature and LTOA = at sensor 

spectral radiance, W/m2 × sr × μm. We then 
transformed LT into a temperature in Kelvin 
(using Planck’s equation), and then converted 
Kelvin to degrees Celsius. 

Once the scene was transformed to a sur­
face temperature in units of degrees Celsius, 
temperatures outside our range of inter­
est (< 0°C) or areas of no data (water) were 
masked out of the layer (given a value of 
NoData). The implausible ranges were likely 
a result of some cloud cover over a certain 
point, values over a body of water, or possibly 
a source of error in the reflectance value that 
would cause noise in the analysis.

Geographical and statistical analysis. Using 
spatial analysis tools in ArcGIS, we averaged 
the LST and SI over the areas of the follow­
ing seven concentric circles with different radii 
around each outdoor monitoring unit (buf­
fers): at the point (0 m) and at 100, 200, 300, 
400, 500, and 800 m. We assessed the values 
at different buffers because they can represent 
physical processes that can occur at different 
spatial scales within the urban canopy layer—
the layer of the urban atmosphere extending 
upward from the surface to building height 
(Roy and Yuan 2009). These spatial scales 
range from the microlevel (at the home = 0 m) 
to more macrolevel (block, neighborhood) 
exposures. The physical mechanism of cor­
relation is that thermometers “sense” tempera­
ture that is transferred from the “source area” 
(i.e., surfaces below, around) to the sensors 
through turbulent transport. Thus the rela­
tionship between source area (i.e., LST) and 
thermometer depends on both atmospheric 
and surface states. Furthermore, LST and 
ground-based temperature can be influenced 
by a number of physical factors relevant to the 
study area—surface heterogeneity, considerable 

variability in temperature over small areas, and 
physical structures—and the varying buffers 
allowed exploration of on what scale these fac­
tors might operate. From a health perspective, 
understanding correlations at these different 
spatial scales can inform tools for use at the 
urban-local scale, to predict “hot spots” where 
prevention of heat illness and deaths is espe­
cially needed. The grid cells for SI (30-m reso­
lution) and LST (120-m resolution) that were 
contained completely within and intersected 
the corresponding buffer were included in 
the calculation. The zonal-stats operation was 
used to generate the average LST and SI for 
each of the buffers. Spearman rank correlation 
coefficients were calculated between the mean 
LSTs and SIs and the temperatures from the 
outdoor monitoring network averaged over 
five time periods: 1205 hours [to correspond 
to the time of the satellite image (average of 
1200 and 1210 hours)]; average temperature 
from 0920 to 1210 hours (3-hr average); aver­
age temperature from 0400 to 0500 hours 
on 19  August 2009 (nighttime tempera­
ture); average temperature from 1210 hours 
on 18 August to 1210 hours 19 August 2009 
(daily); and, August average monthly tempera­
ture (monthly). The maximum and minimum 
temperatures and standard deviation for each 
group of measurements were calculated. These 
different time periods were chosen to see 
whether LST and/or SI taken at one point in 
time would give a better picture of instanta­
neous versus longer-term spatial variation in 
temperatures in the study area.

Related to this point, we explored how 
well the LST captured by the one usable 
2009 LST image represented the LST over 
a longer time frame, especially in this region 
where population growth and economic 

Figure 1. The processing method for converting raw satellite images to land surface temperature. 
Parallelograms denote data inputs, squares denote calculations, and the shaded oval denotes the final 
value (temperature leaving Earth’s surface).
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development have been static or declining in 
recent years. To better understand whether the 
2009 scene showed a spatial variation of tem­
peratures within the region similar to other 
images from different time points and differ­
ent years, we processed and evaluated multiple 
LST images from a 10‑year time span in the 
same manner as the 2009 image. From 1999 
to 2009, we found only four “high quality” 
images (for 2002, 2003, 2004, and 2008) dur­
ing our study months of 1  June–31 August. 
Correlation coefficients were calculated com­
paring a composite image (i.e., all five usable 
LST scenes overlaid in GIS) versus each sin­
gle-year scene. Additionally, the entire LST 
scenes (i.e., all 245,188 pixels, 120‑m resolu­
tion) were used for this analysis, not just the 
temperatures extracted at the various buffers 
around the HOBO monitors.

SAS version 9.2 (SAS Institute Inc., Cary, 
NC) was used for all statistical analysis, and 
ArcGIS 9 was used for all spatial analysis.

Results
Temperature data from 19 of 24 ground-based 
monitors positioned throughout the county 
were used in the analysis. Five of the tem­
perature monitors were excluded due to sit­
ing conditions that could have jeopardized the 
readings, such as being too close to a build­
ing. A search in the Landsat 4 and L5‑TM 
archive data sets for the Detroit area (latitude 
42.331427, longitude –83.0457538), yielded 
21 satellite images. Of these 17 had a cloud 
cover percentage > 14%, and 16 did not cover 
the study area geographically. Consequently, 
one image, taken by the satellite on 19 August 
2009, met our criteria (i.e., covered the geo­
graphic area of interest; had cloud cover of 
< 14%, captured during the time period of 

the study (13 June–30 September 2009). This 
image was acquired during the daytime at 1805 
hours GMT (1205 hours EDT). The quality of 
band 6 was scored as a 9, the highest score for 
images. This value reflects the quality and level 
of errors detected in the image (see USGS 2013 
for explanation). Figure 2 shows the final pro­
cessed band 6 image of the study area.

The highest levels of mean SI were seen in 
the 500‑m buffer zones across all of the loca­
tions (Table 1). Overall, the New Center loca­
tion had the highest SIs (range, 42–87.7%), 
and the New Boston location had the low­
est overall SIs (range, 9.0–18.5%). The New 
Center area location had the highest LSTs 
compared with other locations, from 24.4 to 
25.6°C, whereas the New Boston area had 
the lowest overall LSTs, from 18.2 to 18.4°C. 
In terms of the ground-based temperature 
readings, the instantaneous 1205-hours time 
point at each location showed a higher maxi­
mum temperature than the other recorded 
time points.

At least two statistically significant cor­
relations, for each radius distance, were seen 
between LST and the ground-based tem­
peratures for the daily and monthly tempera­
ture for all buffers except 100 m, as shown 
in Table 2. At least three statistically signifi­
cant correlations were also seen for each radius 
distance between SI and ground-based air 
temperature measurements for nighttime tem­
perature, daily temperature, and monthly tem­
perature at all buffers except the 0-m point. 
For the relationship between SI and LST, sta­
tistically significant correlations were found 
with Spearman correlation coefficients ranging 
from 0.49 to 0.91, as shown in Table 3.

In the analysis comparing spatial varia­
tion in LST using five summertime satellite 

images from 2002, 2003, 2004, 2008, and 
2009, LST temperature ranges and the areas 
with the highest temperatures were consis­
tent over the years. The 2009 LST scene was 
highly correlated with the 5-year composite 
LST scene (R2 = 0.96). We also found a high 
correlation between the SI scenes from two 
different years, 2001 and 2006 (R2 = 0.98).

Discussion
The purpose of this study was to assess the rela­
tionship between LST and SI measurements 
and ground-based air temperature measure­
ments in the Detroit metropolitan region. Our 
results showed a statistically significant rela­
tionship between LST and SI at all buffers, as 
well as LST and SI and the ground-based air 
temperatures at certain buffers. These correla­
tions between LST and SI are consistent with 
findings from other published studies (Imhoff 
et al. 2010; Uejio et al. 2011; Yuan and Bauer 
2007; Zhou and Shepherd 2009). This suggests 
that SI data, which require much less processing 
than the LST data, could be used as a proxy for 
LST. Consequently, public health researchers 
and practitioners may still be able to use a fairly 
straightforward method to determine city hot 
spots using high SI as an indicator of potential 
increased temperature exposure.

Our study used standard methods that 
facilitate comparisons with other work, and 
is the first analysis of this kind during the 
summertime in an large, urban Midwest city. 
Detroit has unique features, including a higher 
proportion of vacant lots than in other metro­
politan areas. Additionally, our study simul­
taneously explored the relationship between 
SI, LST calculated from thermal imagery, and 
ground-based temperature measures, adding 
the ground-truthing element that has been 
called for to independently validate the satellite 
imagery as a proxy for human-scale exposures 
(Voogt and Oke 2003).

The consistency of our findings with those 
of other studies suggests that these unique fea­
tures do not impair the overall utility of satel­
lite imagery for public health applications. 
In Detroit, the 2009 satellite-derived LST 
image—corrected for atmospheric effects and 
spatial variations in emissivity—as well as the SI 
image from the 2006 NLCD might be suitable 
to represent air temperature variability between 
sites for heat exposure studies in the region or 
for targeting heat-health interventions. Because 
our land-cover data do not distinguish among 
different types of impervious surface, we were 
unable to represent possible differences in emis­
sivities among them, and this is a type of vari­
ability that contributes to possible uncertainties 
in our analysis. The analysis we did comparing 
the 2009 scene with LST calculated from four 
previous years’ summertime scenes showed that 
the LST estimated from the satellite images 
was relatively consistent over time, suggesting 

Figure 2. Final processed L5-TM image of the Detroit metropolitan region study area and the locations 
of the ground-based temperature monitors (HOBOs). Abbreviations: UM, University of Michigan; WSU, 
Wayne State University. 
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that changes in land use were not substantial in 
the Detroit metropolitan region. Further, for 
application in heat-health studies, LST is bet­
ter suited for representing physical properties 
that are stable over time and can affect human 
temperature exposure rather than as a proxy for 
actual ambient air temperature at a particular 
point in time.

Our results complement those of two sis­
ter studies of the Detroit metropolitan region 
that examined spatial variation of temperature 
during the entire summer of 2008. The first 
study used the same observational network 
of air temperature monitors that we used in 
the present study in conjunction with airport 
temperature monitors and monitors operated 

by the state of Michigan Department of 
Environmental Quality (Oswald et al. 2012). 
This study found the correlation between 
summer mean daily low temperature anoma­
lies (the daily residuals at each location minus 
measurement uncertainty) in 2009 and SI in 
2001 (r = 0.68 at the 200‑m buffer, p < 0.001) 
to be higher than between daily temperature 
anomalies and other geographic characteris­
tics. This suggests that in relatively sprawling 
cities, the urban heat island most closely fol­
lows SI and would have a unique structure in 
each city based on the SI structure (Oswald 
et al. 2012). A second study used geospatial 
approaches to create a continuous, spatial layer 
of estimated air temperature, and found high 

correlations between SI measured in 2006 and 
observed air temperatures in 2008 (Zhang 
et  al. 2011). Neither of those two studies 
examined LST, but the fact that they observed 
correlations between SI and air temperatures 
using different methodologies supports our 
finding that SI and, by extension, LST are 
moderately correlated with air temperature.

Previous studies have ground-truthed 
L5-TM data using airborne thermal scan­
ner flights (Voogt and Oke 1998) or using 
satellite data in conjunction with ground-
based air temperature measurements with 
other remote sensing predictors to create a 
model for air temperature (Cristóbal et al. 
2008). Other researchers have also created a 

Table 1. Summary of satellite-derived average LST measurements and ground-based temperature monitoring network temperatures.

Location name

Percent surface imperviousness at different radii  
(m) around the outdoor monitoring point

Landsat-derived surface temperatures (°C) at different 
radii (m) around the outdoor monitoring point

Ground-based temperature network  
readings (°C)

0 100 300 400 500 800 0 100 300 400 500 800 Sata
3-hr 
avgb Nightc

Daily 
avgd

Monthly 
avge

Allen Park 13.0 29.3 51.5 50.9 47.9 44.8 21.6 21.3 22.2 22.3 22.3 21.8 26.5 25.3 19.6 24.0 21.7
Canton 59.0 33.8 36.3 36.2 37.1 35.5 21.1 21.4 21.8 22.0 21.9 21.7 25.6 24.4 17.1 22.2 20.7
Conner 69.0 64.1 75.1 74.3 74.8 73.4 23.4 23.1 22.7 23.0 23.1 23.7 26.3 25.2 18.8 24.4 22.0
Corktown 35.0 48.9 48.8 53.0 59.7 65.8 21.1 21.6 22.1 22.4 22.9 23.4 27.6 25.6 19.0 23.7 21.7
East Detroit 61.0 71.0 50.4 52.2 53.4 54.5 22.1 21.8 21.2 21.3 21.3 21.4 26.2 24.9 20.4 24.4 22.0
East Jefferson 32.0 37.0 41.1 44.5 45.1 49.1 19.2 19.2 19.7 20.0 20.1 20.4 23.5 23.4 19.3 23.2 20.9
Garden City 47.0 50.5 50.8 51.1 51.9 52.7 22.0 22.0 21.8 22.0 22.2 22.3 26.7 23.9 18.8 23.4 21.3
Indian Village 58.0 42.2 41.2 43.5 47.0 51.2 20.4 20.3 20.1 20.4 20.7 21.2 26.7 23.3 19.8 23.8 21.7
Joy Rd. 35.0 19.6 15.1 13.3 12.2 13.7 20.8 21.0 19.6 19.1 18.9 19.0 26.7 25.3 18.2 23.3 21.1
New Boston 9.0 9.0 18.5 18.3 16.8 13.9 18.6 18.4 18.4 18.4 18.4 18.4 27.3 25.5 18.3 22.6 20.9
New Center 42.0 79.2 86.1 87.4 87.7 83.1 24.9 25.6 25.5 25.2 24.9 24.4 26.7 25.1 21.0 24.8 22.3
Redford 2 44.0 49.7 55.7 55.6 56.5 57.0 22.6 22.9 22.8 22.7 22.6 22.4 24.8 24.7 19.3 23.8 21.5
UM Dearborn 14.0 39.1 35.3 37.1 37.5 33.9 21.3 21.2 21.5 21.1 21.1 20.5 26.1 24.8 18.2 23.0 21.1
West Detroit 1 25.0 45.0 43.7 43.3 45.8 51.0 20.8 20.9 21.1 21.2 21.4 21.8 25.1 23.7 19.7 23.6 21.5
West Detroit 3 57.0 66.4 69.6 65.6 62.5 57.3 23.5 23.6 23.3 22.9 22.5 22.2 28.0 24.0 19.7 24.0 21.5
West Detroit 5 55.0 54.4 50.0 53.3 55.8 62.3 21.2 21.1 21.5 21.7 22.0 22.5 27.7 26.4 18.9 23.5 21.6
West Village 30.0 45.0 51.8 50.5 48.1 50.7 20.5 20.5 20.7 20.9 20.9 21.3 26.7 25.3 19.9 24.1 21.7
Westland 84.0 47.4 45.2 47.5 45.3 38.5 24.7 23.9 22.3 22.1 21.7 21.0 26.5 23.2 18.4 23.1 21.2
Wayne State University 32.0 76.1 81.5 75.0 70.9 71.5 23.1 23.7 24.1 23.9 23.6 23.5 26.7 25.3 20.1 24.2 22.0
Minimum 9.0 9.0 15.1 13.3 12.2 13.7 18.6 18.4 18.4 18.4 18.4 18.4 23.5 23.2 17.1 22.2 20.7
Maximum 84.0 79.2 86.1 87.4 87.7 83.1 24.9 25.6 25.5 25.2 24.9 24.4 28.0 26.4 21.0 24.8 22.3
SD 20.1 18.4 18.5 17.9 17.9 18.1 1.7 1.7 1.7 1.6 1.5 1.5 1.1 0.9 0.9 0.6 0.4

Abbreviations: avg, average; UM, University of Michigan.
aSat: instantaneous satellite temperature taken at 1205 hours. bAverage temperature from 0920 am to 1210 hours. cAverage nighttime temperature from 0400 to 0500 hours on 19 August 
2009. dAverage temperature from 1210 hours on 18 August 2009 to 1210 hours 19 August 2009. eAugust average monthly temperature. 

Table 2. Spearman rank correlation coefficients (p-values) between satellite-derived LST and SI measurements, with ground-based temperature measurements.

Measurement

Concentric radii distances (m)
around monitoring point used 

to calculate an average

Ground-based temperature measurements

Instantaneous 
temperature, 
1205 hours,  

19 August 2009
Average temperature,  

0920–1210 hours

Average temperature, 
0400–0500 hours,  
19 August 2009

Average temperature 
from 1205 hours, 18 August 

2009 to 1210 hours, 
19 August 2009

August average 
monthly 

temperature
LST At point (0 m) 0.0018 (0.99) –0.11 (0.66) 0.22 (0.36) 0.47 (0.043) 0.47 (0.041)

100 0.026 (0.91) –0.10 (0.68) 0.21 (0.38) 0.44 (0.060) 0.44 (0.053)
300 0.0070 (0.98) –0.0070 (0.98) 0.28 (0.24) 0.48 (0.038) 0.51 (0.027)
400 0.030 (0.90) 0.084 (0.73) 0.33 (0.17) 0.55 (0.015) 0.59 (0.0084)
500 0.068 (0.78) 0.18 (0.45) 0.32 (0.18) 0.55 (0.014) 0.61 (0.0057)
800 0.13 (0.60) 0.25 (0.30) 0.41 (0.085) 0.62 (0.0048) 0.68 (0.0014)

SI At point (0 m) 0.058 (0.81) –0.39 (0.098) –0.0097 (0.97) 0.17 (0.47) 0.71 (0.48)
100 0.16 (0.50) 0.019 (0.94) 0.59 (0.0075) 0.72 (0.0005) 0.69 (0.001)
300 0.081 (0.74) 0.15 (0.54) 0.66 (0.002) 0.83 (< 0.0001) 0.81 (< 0.0001)
400 0.17 (0.48) 0.20 (0.40) 0.59 (0.0077) 0.76 (0.0001) 0.77 (0.0001)
500 0.22 (0.36) 0.22 (0.36) 0.62 (0.0043) 0.81 (< 0.0001) 0.82 (< 0.0001)
800 0.22 (0.37) 0.17 (0.48) 0.60 (0.0062) 0.75 (0.0002) 0.77 (0.0001)

Spearman correlation statistical test was used to calculate a correlation coefficient; p < 0.05. 
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spatiotemporal general linear model to esti­
mate surface temperature using several pre­
dictors with 15 Landsat multispectral images 
taken between 1987 and 2002 for the Quebec 
Province, Canada, spanning June–August 
(Kestens et al. 2011). Using ambient tempera­
tures recorded from multiple meteorological 
stations, they found that the 3-day average air 
temperature was a strong predictor of LST, 
as were the NDVI and land cover categories. 
Their results suggest that increasing the num­
ber of meteorological and geographical predic­
tors could provide more precise estimates of 
heat exposure in urban areas.

An added benefit of using SI as a proxy 
for temperature exposure is that increasing 
vegetative cover and other changes can reduce 
the heat-trapping potential of the urban land­
scape; therefore, results of studies using SI 
could be of direct relevance for policy changes. 
This finding might be helpful in the urban 
planning sector.

Correlations between LST and ground-
based temperature measurements (Table 2), 
were stronger at the largest radii (e.g., 500 m 
and 800 m), and stronger using the aver­
age temperature from day 1 to day 2 and the 
monthly temperature. Several possible reasons 
for this come to mind. Urban areas are hetero­
geneous in topography, physical structures, 
land use, and the like, so averaging of the LST 
temperature over a larger buffer zone may 
drown out the physical noise that can influence 
the air temperature at a specific point.

The stronger correlations when tempera­
tures are averaged over longer time spans sug­
gest that instantaneous temperatures are less 
indicative of the overall spatial pattern of the 
temperature tendencies. Morning tempera­
tures are likely less correlated due to lack of 
turbulent transport (the main mechanism 
relating source area to sensor) and influence of 
cold air drainage (i.e., topography). However, 
in terms of estimating personal exposure, 
lower correlation between these satellite 
data sources and the actual ground-based air 
temperature readings at 1205 hours and the 
3-hour average underscores the importance of 
identifying other tools that can better gauge 
actual short-term temperature exposure near 
the ground surface, especially when health 
outcomes that can result from acute exposures 

are of interest. Previous epidemiologic studies 
of heat and daily mortality that have included 
Detroit have found that heat exposure on days 
0–1 have been most relevant (e.g., Anderson 
and Bell 2009), although heat wave durations 
of at least 4 days may have an additional effect 
(e.g., Gasparrini and Armstrong 2010). The 
day is the common time unit of analysis for 
administrative databases of health outcomes 
(hospitalization, deaths, births), but other 
clinical outcomes that could be affected by 
heat (e.g., blood pressure, pulse rate) may be 
available at a finer time scale, such that hour-
specific temperature data would be relevant. 
Longer duration of warm temperatures could 
also be relevant to both the exposure and the 
health resilience of residents, relating to air 
conditioning use and overall energy demand 
in homes.

Using the LST and SI data in conjunc­
tion with health outcome data could provide 
a more general understanding of spatial heat 
vulnerability. For example, an epidemiologic 
investigation of a 1993 extreme heat event 
in Philadelphia used satellite imagery and 
geostatistical methods to determine whether 
vulnerability to heat-related mortality was 
higher in areas with higher urban heat inten­
sity (Johnson and Wilson 2009). The authors 
found that the heat load of the environ­
ment detected by the Landsat satellite data 
was potentially a contributing factor to heat-
related deaths during the summer of 1993, 
and that the thermal data used in this study 
could be used to develop models of place-
based vulnerability.

More frequent daily observations are made 
by MODIS. However, this sensor records 
thermal emission at a spatial resolution (1 km) 
too coarse for micro-urban heat island inves­
tigations. Future studies should investigate 
the public health implications of this trade-off 
between temporal frequency and spatial reso­
lution. Additionally, researchers have created 
new methods to better use satellite imagery to 
assess land surface temperature. In particular, 
physical and statistical methods for downscal­
ing MODIS scenes (Liu and Pu 2008) and 
enhanced physical methods that will reduce 
downscaling uncertainty, reduce the smooth 
effects, and block effects due to isothermal 
assumption (Liu and Zhu 2012) could be 
incorporated into health studies.

Our ground-based temperature moni­
tors were mounted 1.5 m above the ground, 
and the non-statistically significant relation­
ships that we found between LST and the 
ground-based temperature monitoring net­
work—for all buffers for the instantaneous 
and 3‑hr average temperatures as well as the 
0- to 700‑m buffers for average daily tempera­
ture—might be a result of mixing, advection, 
and convection processes within the bound­
ary layer that influence the air temperatures 

recorded by the outdoor temperature moni­
tor. Because we are comparing two different 
types of measurements—surface tempera­
ture and air temperature—the correlations 
between these measurements might not be 
as strong due to logistical (e.g., timing and 
resolution) as well as physical (e.g., advec­
tion, wind) considerations that could affect 
the derived surface temperatures.

Limitations
The availability of satellite products is a key 
limitation. Of 21 LST scenes examined, only 
one scene was usable in that it lacked signifi­
cant cloud cover and covered the study area 
geographically. The 16‑day cycle on which 
Landsat images are acquired for a specific area 
does not afford researchers the opportunity 
to compare multiple images within a useful 
timeframe. Additionally, L5-TM data have a 
large spatial resolution (120 m), which might 
not capture the full heterogeneity of an urban 
environment (Johnson 2009).

Further, although we were able to match 
the time of acquisition of the ground data to 
the same time as the satellite data, the 1205 
hours passing time of the Landsat satellite is 
not optimal for temperature–health studies. 
First, this time generally corresponds to a time 
of the day when ground temperatures transi­
tion from being cooler than air temperature 
to being warmer than air temperature. This 
means that, within the diurnal cycle, surface 
temperatures are not as significant drivers of 
air temperatures as they are later in the day. 
Second, exposure studies have tended to 
focus on maximum and minimum tempera­
tures, and this time corresponds with neither 
of these (Basu 2009). Although shorter-term 
ground-based temperature timeframes did not 
yield strong correlations with SI or LST, com­
posites of older satellite images could be one 
input into a more comprehensive planning 
tool or index to help describe vulnerability.

Conclusions
Our results support the need for an increased 
effort, nationally, by public and private 
entities, to create useful remotely sensed data 
sources that can be applied to public health 
practice. A workshop report from the National 
Academy of Sciences (National Research 
Council 2007) discussed the challenges and 
potential applications of using remotely sensed 
data for public health. The report indicated 
that one of the major challenges to applying 
these remotely sensed data in the health arena 
is the limited in  situ ground-truthing data 
accompanying remote sensing technology to 
verify analysis, and the high learning curve to 
using the tools required to analyze remotely 
sensed data. Our study gathered ground-
truthing data needed to validate satellite-
derived LST as well as SI. However, our results 

Table 3. Spearman rank correlation coefficients 
(rS) between satellite-derived LST and percent SI.

LST vs. SI calculated at the 
following concentric radii (m) rS (p-value)
0 (at the point) 0.49 (0.032)
100 0.74 (0.003)
200 0.74 (< 0.0003)
300 0.79 (< 0.0001)
400 0.84 (< 0.0001)
500 0.86 (< 0.0001)
800 0.91 (< 0.0001)
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highlight that issues of spatial resolution, image 
availability over certain time periods, and the 
complex urban landscape remain challenges 
in the effort to integrate remotely sensed data 
with public health research and practice.

From a public health perspective, it is 
important to target resources and health inter­
ventions for the most vulnerable populations. 
The availability and usefulness of remote sens­
ing data, integrated with social and economic 
demographic data, can provide a powerful tool 
for assessing vulnerability. A quality of life 
study conducted by Athens–Clarke County, 
Georgia, used one cloud-free image, aerial 
photographs, and U.S. Census data to overlay 
biophysical (land surface temperature, NDVI, 
land use, and land cover) and socioeconomic 
layers (population density, per capita income, 
median home value, education) to create a 
quality of life indicator (Lo and Faber 1997). 
The research found a strong relationship 
between biophysical and socioeconomic vari­
ables, which could be useful to assess vulner­
ability in the public health arena. In the field 
of heat epidemiology, being able to utilize a 
user-friendly data source such as SI as a proxy 
for surface temperature exposure can further 
our understanding of spatial vulnerability to 
heat. Another study has already shown that 
areas of the Detroit metropolitan region with 
high SI had statistically significant correla­
tions with several sociodemographic variables: 
being ≥ 65 years of age and living alone, being 
able to leave the home, education level, living 
below the poverty line, and being nonwhite 
(White-Newsome et al. 2009).

There are several ways that remote sensing 
data could be better integrated into public 
health practice: a) increasing the capture fre­
quency of remotely sensed images available 
for research and planning purposes; b) provid­
ing more highly processed data accessible to 
the public, at a finer resolution (10–15 m) 
and if possible at a higher temporal frequency 
that could be more useful for city and county 
level authorities; and c) commissioning more 
research to ground-truth satellite-derived land 
surface temperatures for different-sized urban 
areas, and establishing a set of fairly simple, 
standard best practices that can be used to esti­
mate the influences of atmospheric and other 
factors on deriving a precise LST value from 
remote sensed imagery could be useful for 
planning for extreme heat events. Landsat data 
are the most consistent and widely available 
source of relatively high-resolution thermal 
information from satellites, but can be limited 
due to the number of clear images available at 
certain days and times. A gap in availability of 
these data exists, but continued acquisition of 
these data or data of comparable resolution 

has the potential to provide important spatial 
information about differential heat exposures.

One contribution of our study is to under­
score the importance of the limitations of 
data, and emphasize that it is critical to have 
data that are accessible, useful, and timely 
for those working in public health. One of 
the main objectives of this study was to see 
whether a “non–remote-sensing professional” 
could create a tool—using available data—
that can be used to estimate heat exposure. 
Reporting on the challenges we faced in 
doing this is one way to bring the issue to the 
attention of the remote-sensing community. 
As more practitioners demand these data, our 
research and other research that attempts to 
use the simplest methods should provide the 
impetus to fill the gaps in data to overcome 
these limitations. 
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